1,121 research outputs found

    Model-Free Control of an Unmanned Aircraft Quadcopter Type System

    Get PDF
    A model-free control algorithm based on the sliding mode control method for unmanned aircraft systems is proposed. The mathematical model of the dynamic system is not required to derive the sliding mode control law for this proposed method. The knowledge of the system’s order, state measurements and control input gain matrix shape and bounds are assumed to derive the control law to track the required trajectories. Lyapunov’s Stability criteria is used to ensure closed-loop asymptotic stability and the error estimate between previous control inputs is used to stabilize the system. A smoothing boundary layer is introduced into the system to eliminate the high frequency chattering of the control input and the higher order states. The [B] matrix used in the model-free algorithm based on the sliding mode control is derived for a quadcopter system. A simulation of a quadcopter is built in Simulink and the model-free control algorithm based on sliding mode control is implemented and a PID control law is used to compare the performance of the model-free control algorithm based off of the RMS (Root-Mean-Square) of the difference between the actual state and the desired state as well as average power usage. The model-free algorithm outperformed the PID controller in all simulations with the quadcopter’s original parameters, double the mass, double the moments of inertia, and double both the mass and the moments of inertia while keep both controllers exactly the same for each simulation

    A Chemistry-Inspired Framework for Achieving Consensus in Wireless Sensor Networks

    Full text link
    The aim of this paper is to show how simple interaction mechanisms, inspired by chemical systems, can provide the basic tools to design and analyze a mathematical model for achieving consensus in wireless sensor networks, characterized by balanced directed graphs. The convergence and stability of the model are first proven by using new mathematical tools, which are borrowed directly from chemical theory, and then validated by means of simulation results, for different network topologies and number of sensors. The underlying chemical theory is also used to derive simple interaction rules that may account for practical issues, such as the estimation of the number of neighbors and the robustness against perturbations. Finally, the proposed chemical solution is validated under real-world conditions by means of a four-node hardware implementation where the exchange of information among nodes takes place in a distributed manner (with no need for any admission control and synchronism procedure), simply relying on the transmission of a pulse whose rate is proportional to the state of each sensor.Comment: 12 pages, 10 figures, submitted to IEEE Sensors Journa

    EVALUATING THE ACCURACY OF TAIL RISK FORECASTS FOR SYSTEMIC RISK MEASUREMENT

    Get PDF
    In this paper we address how to evaluate tail risk forecasts for systemic risk measurement. We propose two loss functions, the Tail Tick Loss and the Tail Mean Square Error, to evaluate, respectively, CoVaR and MES forecasts. We then analyse CoVaR and MES forecasts for a panel of top US financial institutions between 2000 and 2012 constructed using a set of bivariate DCC-GARCH-type models. The empirical results highlight the importance of using an appropriate loss function for the evaluation of such forecasts. Among other findings, the analysis confirms that the DCC-GJR specification provides accurate predictions for both CoVaR and MES, in particular for the riskiest group of institutions in the panel (Broker-Dealers)

    Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Get PDF
    Background: Acanthamoebae polyphaga Mimivirus (APM) is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results: This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion: The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies

    Accuracy improvement in the TDR-based localization of water leaks

    Get PDF
    A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems.Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed.To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak. Keywords: Leak localization, TDR, Time domain reflectometry, Water leaks, Underground water pipe

    Novel Cu(I)-5-nitropyridine-2-thiol Cluster with NIR Emission: Structural and Photophysical Characterization

    Get PDF
    A novel Cu(I) cluster compound has been synthesized by reacting CuI with the 2,2′-dithiobis(5-nitropyridine) ligand under solvothermal conditions. During the reaction, the original ligand breaks into the 5-nitropyridine-2-thiolate moiety, which acts as the coordinating ligand with both N- and S-sites, leading to a distorted octahedral Cu6S6 cluster. The structure has been determined by single-crystal X-ray diffraction and FT-IR analysis, and the photophysical properties have been determined in the solid state by means of steady-state and time-resolved optical techniques. The cluster presents a near-infrared emission showing an unusual temperature dependence: when passing from 77 to 298 K, a blue-shift of the emission band is observed, associated with a decrease in its intensity. Time-dependent-density functional theory calculations suggest that the observed behavior can be ascribed to a complex interplay of excited states, basically in the triplet manifold

    Novel Transaminase and Laccase from Streptomyces spp. Using Combined Identification Approaches

    Get PDF
    Three Streptomyces sp. strains with a multitude of target enzymatic activities confirmed by functional screening, namely BV129, BV286 and BV333, were subjected to genome sequencing aiming at the annotation of genes of interest, in-depth bioinformatics characterization and functional expression of the biocatalysts. A whole-genome shotgun sequencing followed by de novo genome assembly and annotation was performed revealing genomes of 6.4, 9.4 and 7.3 Mbp, respectively. Functional annotation of the proteins of interest resulted in between 2047 and 2763 putative targets. Among the various enzymatic activities that the three Streptomyces strains demonstrated to produce by functional screening, we focused our attention on transaminases (TAs) and laccases due to their high biocatalytic potential. Bioinformatics search allowed the identification of a putative TA from Streptomyces sp. BV333 as a potentially novel broad substrate scope TA and a putative laccase from Streptomyces sp. BV286 as potentially novel blue multicopper oxidase. The two sequences were cloned and overexpressed in Escherichia coli and the two novel enzymes, transaminase Sbv333-TA and laccase Sbv286-LAC, were characterized. Interestingly, both enzymes resulted to be exceptionally thermostable, Sbv333-TA showing a melting temperature (T-M = 85 degrees C) only slightly lower compared to the T-M of the most thermostable transaminases described to date (87-88 degrees C) and Sbv286-LAC being even thermoactivated at temperature gt 60 degrees C. Moreover, Sbv333-TA showed a broad substrate scope and remarkably demonstrated to be active in the transamination of beta-ketoesters, which are rarely accepted by currently known TAs. On the other hand, Sbv286-LAC showed an improved activity in the presence of the cosolvent acetonitrile. Overall, it was shown that a combination of approaches from standard microbiological and biochemical screens to genome sequencing and analysis is required to afford novel and functional biocatalysts

    Systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis : focus on giant cell arteritis

    Get PDF
    © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.Objectives: To analyse the current evidence for the management of large vessel vasculitis (LVV) to inform the 2018 update of the EULAR recommendations. Methods: Two systematic literature reviews (SLRs) dealing with diagnosis/monitoring and treatment strategies for LVV, respectively, were performed. Medline, Embase and Cochrane databases were searched from inception to 31 December 2017. Evidence on imaging was excluded as recently published in dedicated EULAR recommendations. This paper focuses on the data relevant to giant cell arteritis (GCA). Results: We identified 287 eligible articles (122 studies focused on diagnosis/monitoring, 165 on treatment). The implementation of a fast-track approach to diagnosis significantly lowers the risk of permanent visual loss compared with historical cohorts (level of evidence, LoE 2b). Reliable diagnostic or prognostic biomarkers for GCA are still not available (LoE 3b).The SLR confirms the efficacy of prompt initiation of glucocorticoids (GC). There is no high-quality evidence on the most appropriate starting dose, route of administration, tapering and duration of GC (LoE 4). Patients with GCA are at increased risk of dose-dependent GC-related adverse events (LoE 3b). The addition of methotrexate or tocilizumab reduces relapse rates and GC requirements (LoE 1b). There is no consistent evidence that initiating antiplatelet agents at diagnosis would prevent future ischaemic events (LoE 2a). There is little evidence to guide monitoring of patients with GCA. Conclusions: Results from two SLRs identified novel evidence on the management of GCA to guide the 2018 update of the EULAR recommendations on the management of LVV.info:eu-repo/semantics/publishedVersio

    Motion Estimation and Compensation in Automotive MIMO SAR

    Get PDF
    With the advent of self-driving vehicles, autonomous driving systems will have to rely on a vast number of heterogeneous sensors to perform dynamic perception of the surrounding environment. Synthetic Aperture Radar (SAR) systems increase the resolution of conventional mass-market radars by exploiting the vehicle's ego-motion, requiring a very accurate knowledge of the trajectory, usually not compatible with automotive-grade navigation systems. In this regard, this paper deals with the analysis, estimation and compensation of trajectory estimation errors in automotive SAR systems, proposing a complete residual motion estimation and compensation workflow. We start by defining the geometry of the acquisition and the basic processing steps of Multiple-Input Multiple-Output (MIMO) SAR systems. Then, we analytically derive the effects of typical motion errors in automotive SAR imaging. Based on the derived models, the procedure is detailed, outlining the guidelines for its practical implementation. We show the effectiveness of the proposed technique by means of experimental data gathered by a 77 GHz radar mounted in a forward looking configuration.Comment: 14 page
    corecore